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Dissipative multistate systems in the scaling limit
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The dynamics of dissipative multistate systems is studied using integral equations that are derived within the
framework of the path integral-formulation of quantum mechanics. As an illustrative example we study a
5-state system coupled to a harmonic reservoir with an Ohmic spectral density with a high cutoff frequency.
The dominant exchange mechanism determining the dynamics as well as the range of validity of different
approximations to the influence functional are investigated. Besides depending on temperature and the strength
of the system-bath coupling, both the exchange mechanism and the accuracy of different approximations to the
influence functional depend on the state in which the system is initially pred@#&063-651X99)07307-9

PACS numbd(s): 05.30—d

[. INTRODUCTION aims to calculate transport properties such as the nonlinear
. L mobility or diffusion coefficients, the initial state on the in-
Quantum Brownian motion is an archetype system for. - . .
: . . . finite grid can be chosen arbitrary. If, on the contrary, one
many problems in physics and chemistry. It describes the . A
i L ) . : wants to study the transport along a chain, the initial sites
dynamics of a particle in a multiwell potential that is coupled
. . must be chosen as the edge states.
to an environmenfl]. In the deep quantum regime, the dy-

. ¢ h ticl b deled tat Recently, a description of the reduced dynamics in terms
namics of such a particle may be modeled thlstate sys- . of integral equations termed interacting blip chain approxi-

tem, where a smglg localized state corresponds to each MR ation (IBCA) was derived for the dissipative two-state sys-
mum of the potential2]. The case where the system can beiem [13]. This approach is generalized hb-state systems in
confined to just two states, the familiar spin-boson systemye nresent paper. In principle, the range of the memory in
has found widespread application to various biologicalthe influence functional is unlimited, and thus the numerical
chemical, and physical systenisee [2], and references treatment is tedious. Approaches based on the Trotter split
therein. Dissipation is induced by a bilinear coupling to a up[14-18, which take into account all or at least long-range
heat bath, which is commonly represented by a set of hafinteractions entering the influence functional, are computa-
monic oscillators. Another familiar picture is the tight- tionally demanding and suffer from the ubiquitous sign prob-
binding representation of a quantum particle in a periodidem [19-21]. If the coupling to the environmental modes is
potential under the influence of a bath. If there is only aweak and/or the temperature is high, the Markov approxima-
single localized state in each well, the system is then equivaion can be applied, bringing about significant simplifications
lent to an infinite one-dimensional lattice. Within the path-[2,22—-283. Although substantial progress has been made on
integral formulation of quantum mechanic-5], it is pos-  the analytical sid¢26—29, numerical calculations are inevi-
sible to eliminate a harmonic reservoir. The effect of thetable for low temperatures and intermediate coupling
environment is then described by a time-nonlocal influencestrength. However, if the spectral density of the bath is
functional[4,2,6]. Ohmic with a high cutoff frequency, the correlations be-
Many transport phenomena in condensed matter physidsveen different segments of an individual path decay rapidly
can be modeled by quantum Brownian motion in a cosineand consequently considering only local contributions or
potential [7]. The case of frequency-independent dampingnext-neighbor interactions yields a reliable description of the
applies to the electron-hole drag of charged particles in metdynamics in a wide range of the parameter space. In this
als and quasiparticle tunneling in Josephson junct[@;§]. paper, we present results for systems in which the typical
Charge transport through impurities in quantum wir@sas  bath frequency is by far the highest frequency entering the
well as edge currents in fractional quantum Hall devid®§  model. This parameter regime is often denotedsealing
are further applications of the model. In this approach, colHimit. Our algorithm is iterative in time and the scaling with
lective excitations of correlated electrons constitute the resthe number of discretization points is drastically reduced in
ervoir of the quantum Brownian particle. The model has alsacomparison with a full treatment of the dynamics. For a
been applied to study the current-voltage characteristic in 81-state system andl elementary intervals the number of
small Josephson junctidi7,8,11], and to study the quantum paths in the Trotter path integral 82N, whereas in the
diffusion of charged interstitials in metdl&2]. In principle, IBCA with next-neighbor interactions the number of con-
the number of localized states in an extended periodic poterfigurations is only[ (M + 1)M/2]>X[(N+1)N]/2. In prin-
tial is infinite. In numerical simulations the lattice can only ciple, the IBCA can be improved to any desired accuracy but
be represented by a limited number of sites and finite-sizéecomes practically untractable.
effects must be investigated carefully. We study the time The paper is organized the following way. In Sec. Il the
evolution of the reduced density matrix of théstate sys- model is presented. In Sec. lll, the dynamical quantities and
tem. In the results discussed in this work, we choose &he formally exact solution are given. The dynamical equa-
5-state system, a choice that is somehow arbitrary. If onéions resulting from the IBCA are derived in Sec. IV and
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applications are discussed in Sec. V. Finally, in Sec. VlIn the numerical calculations presented in this paper, we as-

conclusions are drawn and an outlook is given. sume a continuous spectral density of Ohmic form,
w
Il. THE DISSIPATIVE M-STATE MODEL J(w)=(277aw/qg)exp< _ w_) )
Cc

We consider da-state system coupled to a bosonic bath.

The stateg|¢;)}j-1,... m Of the tight-binding system with In our notatione is the dimensionless Kondo parameter, that

energiesej};-1, ... m are coupled by next-neighbor intersite describes the strength of the bilinear system-bath coupling,

coupling matrix elements. We assume that all next-neighboand . is a high-frequency cutoff setting the typical time

coupling matrix elements are equal. Dissipation is inducedcale of the dynamics of the bath. Our approach is, however,

by the coupling to an Ohmic bath. The Hamiltonian reads not restricted to a certain form of the spectral density. In
principle any number of discrete modes as well as any con-

H=Hg+Hg+Hiy. (1) tinuous spectral density can be treated.

Here,H.g is the Hamiltonian of th re tight-bindin -
ere,Hrg Is the Hamiltonian of the baetg t-bind 9 sys 11l. DYNAMICAL QUANTITIES AND FORMALLY

tem given by EXACT SOLUTION
€1 0 0 0 T We are interested in the dynamics of the reduced density
0 e, 0 o ... matrix,
1
Hie=5| 0 0 & 0 .. (Pi(1)) =11 bar @in|(EXRIH) /] i)

X (@ilexp(—iHt)) sl @in), (8)

where at timet=0 the system is prepared in a factorizing

o 1 0 0 initial state pyy(0)= & indin(pe) s With the bath in thermal
1 0 1 0 equilibrium. () ; denotes the thermal average with respect to
A 0 1 0 1 @) the bath,8=1/kgT is the inverse temperature, and thg)
2 0 0 1 0 ' are the states of the tight-binding system. Equat®rcan be

expressed in terms of a double path integral:

— ! * ! % !
and the bath and the system-bath interaction are taken into <pk'(t)>3_f qu Dq’ Alq]BlalA™[a15"[q']

account by , , Xexp—Pr[a,9"]}- €)
Hg=>, ( Pa +m“w“x§)|“, (3)  Here, the quantity4[q] is the probability amplitude of the
« \2m, 2 tight-binding system associated with the pgth) in the ab-
sence of biasing and fluctuating forces. The deterministic
. ci A biasing forces are encapsulated in the factor
Hlnt: ; _CaxaQ+ om w2Q . (4)

t
R B[q]=exp{—ij dt’e[q(t’)]]. (10
| is the identity in the Hilbert space of the tight-binding 0

system. The first term ik, describes the bilinear system- The influence functio®q[q.q'] captures the influences of
bath coupling, and the second term represents a counterterr,[rr11,e fluctuating forcer (t). For’ Gaussian statistigg]

which renders the system translationally invariant. The posi-

tion operatorQ of the tight-binding particle is given by t t/
CI>Fv[q,q’]=f00|t’ fo dt’[q(t’)—q’(t")]

Q=qodiag1,2,3...)+ql, (5)
X[(L(t) ")) ga(t”)
where 0o Measures the spacing of the tight-binding lattice. ¢ (t")pa
The shiftq is a measure of the polarization of the bath. The —(t) ) pa’ ()]

states of thévi-level system correspond ¥ localized states Dq in Eq. (9) symbolically denotes summation in the con-

in a potential energy function. The reduction of the system. : e .
dynaFr)nics to such g)ll-level system is justified, if the oilher guration space over all paths with fl_xed boundaries. AS the
discrete states are energetically well separated from theéaeaths are piecewise constant, the influence funcd?o_ns
lowestM states. conyem’fantly expressed in 'germs of the ,secc,),nd integral
The influence of the bosonic bath on the tight—bindingQ(t —t") of the force correlation functio({(t'){(t")). We

system is captured by the spectral density function now introduce the variable:?]

e 7= +q' (D)2, (11)
Nor=g 2 oo © £(D)=(a()—q' ()2, (12)
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q’ N—-1
5 n Prl7.€1= 2 (&A1 —1EmXe )
N—-1r—-1
31 + er SZO (frAr,sés_ingr,sns)- (16)
1 ¢ Here, the first term describes the contributions within the
intervals; and the second term captures all interactions be-
1 g, 5' q tween different segments of a path. Thg, andX; ¢ are the

real and imaginary parts of the interaction of the intenval
FIG. 1. The quasiclassical coordinate=(q+q’)/2 and the  With the preceding intervad Upon introducing the notations
quantum fluctuationg=(q—q’)/2 are depicted schematically for Qj=Q(t;—t,) andQ(7)=Q’(7)+iQ"(7), the interactions

the reduced density matrix of a 5-state system. read
The quasiclassical coordinatgt) describes propagation of A= Qi (17
the center of mass of the tight binding particle while the Y N
so-called quantum fluctuatiorigt) reflect excursions away Xji=Qj+1j~ 2 Tk (18)
from the diagonal of the reduced density matrix. The coor- , , , ,
dinates are illustrated in Fig. 1 for a 5-state system. Ajc= Qi 1kt Qi 1™ Qi ik~ Qi (19)
In analogy to Eq(9), the exact dynamics of the elements
of the reduced density matrix is given by k= Q 1kt Qf k1= Q11— Qs (20)
with
(p ,g(t»ﬁ:f D¢ exp{—Redr[ £]} J(w)
7 w= 2 = —J (21

X f De nALE nIBLE nlexp{—IMPel&, 7]} 1pe second term in the expression %r; is exactly com-
pensating the counterterm in E@). The twice integrated

(13 kernel of the influence function is given by
in terms of the coordinatesand . In this representation, we J(w cosHw/2T)—cosHw/2T—iwT)
exploit the fact that the real part of the influence function Q(n)= _f sinh( w/2T)
depends on the quantum fluctuations only. Thus the symbolic 22)

summation in configuration space can be carried out in two
steps.D¢ denotes summation over all possible configurations\ote thatQ”(7) does not depend on temperature and conse-
of the quantum fluctuations arfd:7 symbolizes the summa- quently the validity of approximations to the exa@t(7) is
tion over the manifold of different quasiclassical configura-not sensitive to the temperature. For the Ohmic spectra| den-
tions corresponding to the same quantum fluctuation. Equasity given in Eq.(7), Q(7) reads[30]
tions (13) and(9) are connected through the relations,

(1) 1+ wlr

~ - Q' (r)=2aln . . ,
A m=AlalA°la’), Blel=Balsal. Pt T (ke =iT)
(4 Q"(7)=2a arctaiw,7), (23
The contribution depending on the bias is given by whereI'(z) is the gamma function, and=1+T/w.. This
form holds for arbitrary cutoff frequency. and we have
. p=4aw.. In the limit of largew./A, the so-calledscaling
Bl &, n]zexp{_ij dt'e, f(t’)}, limit, Eq. (23) reduces to
0 resr
Q'(n=2aln[(ws/7T)sinn 7T7)],
ey 6 (D=eln()+EO]-e[n()—&M1)]. (15 Q"(7)=masgn(r) with Q"(0)=0. (24)

The approximation o”(7) by a step function simplifies the
If the system undergoes transitions between different statesxpression$18) and(20) for the imaginary part of the influ-
at theN—1 intermediate times; within the interval[ty,ty],  ence functional,
the values of the functiong(t) and£(t) are piecewise con-
stant on the intervals;=t;,;—t;, j=0,... N—1. Their Xjj=ma— 3 1ipm, (25)
values are denoted; and §;, respectively. Thus, the influ-
ence functional reads Xjj-1=—Ta,
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Xjj-r=0 for r=2. (26) Q

The influence function now reads

N—-1 N-1r-1

DA™Y ,¢]= 20 £Q" (1) + 21 ;O (£ &)

N—-1

—iom;l &= 11). (27)

If, in addition to a large cutoftv., one assumes weak cou-
pling and high temperatureQ’(7) can be further approxi- 0 001 0,02 wt
mated by a linearized function, Q"

C

Q'(T)zzaln(z%

0.25
Insertion of EqQ.(28) into Eq. (16) leads to the influence (ﬁ

+2amTT. (28)

functional,

N-1 N-1 ©

SR 7.él=2anT > (E1)—-2a 2 &5
r=1 r=1 27T 0 . .

0 0.2 0.4 wt
N-1
—i aTrZ E(p—1mr_q). (29 EIG. 2. In(@ the_ real _parlQ of the tW|ce-|_ntegrat§d kernel of

r=1 the influence functional is shown. The full line depicts the exact

result and the dashed line shows the highapproximation. The
Here, the boundary conditioi,=0 is taken into account. function is shown fot=0 until w.t=0.02. In the inset the full line
This linearization corresponds to a Markov approximation indepicts the exact result and the dashed line shows the linearized
the real part of the kernel of the influence function approximation. The function is shown for=0 until w t=0.5. In
(Z(t")¢(t"))=Kds(t'—t"). Fora=0.1 andB=1/A the accu- (b) the imaginary partQ” of the twice integrated kernel of the
racy of the various approximations are illustrated in Fig. 2.influence functional is shown. The full line depicts the exact result
In the upper graph in F|g 2, the correct expression@_’)r and the dashed line shows the step function for mgh The func-
given by Eq.(23) is compared with the higw, approxima- tion is shoyvn fort=0 unti'l w:t=0.5. The dimgnsionless coupling
tion given by Eq.(24). The differences vanish on a short Strengtha is 0.1 and the inverse temperatyses 1/A.
time scale. In the inset in Fig.(@, the exact expression for
Q' is compared with the linearized version of the interaction
given by Eq.(28). Please note that the time window in the
inset is 25 times bigger than the one in the upper graph i
Fig. 2. On an intermediate time scale the exact expressio Ween the dynamics of a two-state system and a multistate

approaches the asymptotic linear beh_avior. From this ﬁgurgystem. Imagine a two-state system evolving in time under-
it is clear that interactions between different path segment%

by this approach, it has been named IBCA. Practical imple-
mentations, however, are setting limits on the range of the
interactions included. The form of the influence functional

iven by Eq.(16) makes a decisive difference apparent be-

b | d if the i | d by a i oing transitions between different states of the density ma-
can/ € neg.ec'he It the lnte.rva Shar'? sepa;atre; oy a UIMe Qfiy at timest, starting out of a diagonal state. If the system
~1 2‘,%' Finally, we examine the form of the Imaginary aaves the diagonal of the density matrix, there are only two
partQ” for large w. . After a timet~1/10w, the function is

) » . h ¢ off-diagonal states it can occupy. After the succeeding tran-
constant. Figure ®) suggests to approximate the exact func-gjiqn the system is enforced to return to the diagonal. Such
tion by the step function given by Eq4).

an excursion is called blip whereas an intermediate seg-
ment of a path is calledojourn[26]. Each path is thus a
IV. THE INTERACTING-BLIP CHAIN APPROXIMATION succession of diagonal and off-diagonal segments; at any
time t, the system hops, it jumps from the diagonal to the
Recently, a formulation of the dynamics of driven dissi- off-diagonal or vice versa. In multistate systems the situation
pative two-state systems in terms of integral equations wais somewhat different. If the system leaves the diagonal at
introduced[13,24. Starting from this formulation of the dy- the timet=t,, it can undergo any number of transitions
namical problem, more and more sophisticated approximawithin the off-diagonal states until it returns to the diagonal.
tions in the influence functional can be defined by systematiThese excursions are now calleldisters[28]. Within such a
cally taking into account more and more interactionscluster, any interval has interactions via the real part of the
between different path segments in the influence functionaldnfluence functional with its neighbor without a sojourn in
which in turn give rise to increasingly more elaborate sys-between.
tems of integral equations. As linked clusters are generated In the sequel we approximate the influence functional by
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neglecting all interactions with—s>1 in Eq.(16), yielding  The kernels that correspond to the local interaction approxi-

N1 mation of the influence function&B5) are given by

a)IBCA|:77a§:|: 20 (grzAr,r_igrnrxr,r) n
. |
e Koo r) = sl (&~ &) (n— -1 15

+ A& —TEX _ _1).
21 (& rr 1&-1— 16 r,r—17r 1) XeXri—iS,yr,ngr)eXF@fAr,r—ifrmxr,r)-

(30) (36)
If we introduce the quantitie;%,%g(t,r) describing all paths o . )
that hopped into the stafey,&} at timet— 7 and remained The dynamical integral equations corresponding to the ker-

there until the final time, we can express the dynamics of Nels(36) are then drastically simplified. They are given by
the reduced density matrix in terms of coupled integral equa-

tions for thep,, (t,7). ) t L
The initial conditions are given by pye)= deT > K2 &£ (1)p oy e (t=7).
7 =nrlE=¢=1
- 3
Py e(0.0=0, ., 50, (31 >

for a system that starts out of the diagonal state with théequations(37) are, however, already more general than the

guasiclassical coordinate,; . The dynamical equations cor- golden rule equations, because there is no restriction to the

responding to the influence functi¢B0) are then given by  possible transitions between different diagonal states of the
reduced density matrix invoked here. The approximation

- t=7 ' g consists in treating the interactions of the influence func-
p,t,7)= dr’ E K75 (r,7) . : :
7ENLs 0 ey né D tional only locally but still non-Markovian.
7 =nxlE ==
Xp, o(t—7t—7—17"), (32
P V. RESULTS

where theKz,’f’(ﬂ ') are the kernels depending on the  we study the dynamics of dissipative multistate systems
lengths of the intervals and 7'. The kernels describe the with a moderate system-bath coupling=0.1 and Ohmic
interaction between the actual and the proceeding intervaljissipation with a high cutoff frequency af.=500/A, a

They are given by value which is rather high so that the system will behave
. strictly Ohmic. In Sec. Il, the formally exact solution of the
K,,:fglr’ T T-1) problem was given. Despite recent progress in analytical as

well as numerical approaches, a treatment of the dynamics
avoiding any approximation is out of reach, if one wishes to

i
=—sgr[(§,—§r_l)(7;r—7],_1)]7 perform simulations for intermediate to long propagation
times. We discuss three different lines of approximation
Xexp(—ie, 7)exp(E2A,  —i&n X ;) schemes.
bt ronn e (i) The exact influence functional given by Ed.6) may
XexXpé A r—1é—1— 16X r21mr—1). (33)  betruncated. If only next-neighbor interactions are taken into

account, the influence functional E¢0) is obtained. In
The elements of the reduced density matrix are finally obprinciple, by cutting off the interactions after timath-order
tained by next-neighbor interactions, a sequence of more and more so-
phisticated approximations can be defined, which in turn are
more and more tedious to be evaluated.

(ii) The exact, twice-integrated kern@l(7) of the influ-
ence functional, Eq(23), can be replaced by E¢R4) in the
The first term in Eg.(34) takes into account the path that scaling limit. In the resulting influence functional
does not undergo any transition. By keeping trace of moréb2™q 5, £], Eq. (27), the time-nonlocal interactions only
and more interval lengths, the IBCA equations can be exappear in the real part. In the weak coupling and high tem-
tended to a formally exact description of the dynamics. Howperature regimeQ(7) can be replaced by a linearized func-

ever, the higher-order equations are numerically untractablgon given by Eq.(28). In the corresponding influence func-

because of the algebraic growth of the required memory. 01 N[ 5,£], Eq. (29), only local interactions survive.
The simplest approximation to the influence functional

(iii) In principle, the system can evolve in time along any
bossible path in the reduced density matrix. Excursions away
from the diagonal of the reduced density matrix act as a

~ t ~
pvvé(t)zaﬂmmn&f,o_*' J‘Od’f,p”'g(t,’f,). (34)

local interactions only. We then have

N-1 Gaussian filter in the configuration spd@®]. Therefore, it
b &= 20 X ). 35 is often possible to truncate the excursions away from the
ocal 7:¢] zo (G A 16X ) 39 diagonal by some maximum valug., i.e., |&(7)|<&max
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olds for all times G< r<t. Setting&,,,,=1 corresponds to 1
the so-called sequential exchange mechanism. Fy(t) (a)
The aim of this paper is to determine the range of validity
of the different approximations in dependence of the tem-
perature and the initial preparation. In principle, any combi-

nation of different approximations foQ(r), the influence
functional, and the exchange mechanism can be combined.
However, ifQ(7) is linearized, all interblip correlations van-
ish. This illustrates that a line&(7) is equivalent to a Mar-

kov approximation2,24]. Generally speaking, the strength o7 T T T T
of the interblip correlations in the influence functional does / e

not depend on the linear part §(7) [see Eq.(19)]. The 0 - . . .
familiar golden-rule approximation consists in settiéiga, 0 5 10 15 at
=1, and using the influence function®gca 7,£], where

X; r—1 is replaced bﬁ(r_r,1= —Q"(7,). Within the golden
rule &,£,_,=0 holds for allr.

Unfortunately, it is impossible to include all interactions
exactly in numerical simulations if one does not use stochas-
tic integration techniqug0] or alternative sophisticated ap- 0.5¢
proximation scheme$21,15. The approximate influence
function given by Eq(30) underlying the dynamical integral
Eqg. (32 only takes into account next-neighbor interactions.
A high cutoff frequency and moderate temperatures render
the influence functiona(30) a reliable approximation, be-

0.5t

Py()

cause the interactions between separated path segments vat 0 0 - 5 10 At
ish if Q(7) is linear, and we have seen that the deviations of _ .
Q(7) from linearity are relevant at short times orfsee Fig. FIG. 3. Survival probabilities for the temperatuygs-0.1/A (a)

2). The dynamical Eq(32) intrinsically generates a cluster a1dB="1/A (b). The system is initially prepared in the stte).
expansion. A cluster is a sequence of propagation intervald e dimensionless coupling strengtfis 0.1[full lines Ps(t), long-
that leaves the diagonal of the reduced density matrix at gashed line,(t) = Py(t), short-dashed lineBy(t)=Ps(1)].

time t;,; and returns to the diagonal at a later timg,.

During a cluster the system may undergo any number o
transitions between off-diagonal states but never comes ba(i
to nor crosses the diagonal. To take into account interaction

Egav;/%ir:e(alusters, second next-neighbor interactions must arkov approximation breaks down. Replacing the exact ex-
The calc.ulations presented here are for dissipative 5-staPereSS'On(23) k_)y the c qrresp_ondlng Oh_m|c fori24), how- .
systems, and we consider two different initial conditions: aveh results in negI|g|bIe. differences in the r_esults. The di-
" . " vergence of the expressid@’(t) that occurs ift tends to
symmetric state and an edge state. Interestingly enough, the

accuracy of emploved anproximations depends on the initidtc " does not spoil numerical simulations on a grid in time,
y ploy PP . pen ._If the latter is coarse enough. The convergence of the results
state. We present results for the time evolution of the diag

) ~ has been checked empirically. In this temperature regime the
onal elements of the reduced density mat(ix o(t))s,  dynamics is no longer controlled by the sequential exchange
which we denote by;(t) henceforth. In Sedv A we study  mpechanism. Processes wigh,,,—=2 must be taken into ac-
unbiased systems. Biased systems are investigated in S nt. In Fig. 4, the full line corresponds &,.,=2, and the
vV B. dashed line tc¢,,,=1. Clusters which travel further away
from the diagonal can be neglected on the scale shown in
Fig. 4.

So far we considered the dynamics of systems prepared in

First we focus our attention on systems with zero statiche state|¢3). Starting out from this state, the system can
bias ,=---=e5=0). In Fig. 3a), the survival probabili- move in both directions along the discretized system coordi-
ties P;(t) are shown for the temperatuge=0.1/A. The sys-  nate with equal probabilities. Now we study the dynamics of
tem is initially prepared in the stateps). Because of the systems, which start out from the edge state). Figure 3a)
symmetry of the systen,(t) and Ps(t) as well asP,(t) shows the population probabilitie3;(t) for a temperature
and P,(t) coincide. The graphs oP,(t) and Ps(t) are, B=0.1/A. The relaxation towards the equilibrium value of
therefore, omitted in Fig. 3. The dynamics is described verythe population probabilitie®;(t) is much slower than for a
accurately by the Markov approximation corresponding tosymmetric initial preparation. Again, for this temperature,
the interaction given by Eq28), and it is almost completely the dynamics is exactly reproduced by the Markov approxi-
dominated by the sequential exchange processes. The contniration, and it is determined by the sequential exchange
butions of paths, which travel further away from the diagonalmechanism. This also holds true for the temperatgre
of the reduced density matrix, are negligible. The differences=1/A. The results are depicted in Figld. The only differ-

re almost invisible on the scale of FigiaB The situation
Z(hanges considerably if we reduce temperature by a factor of
en. In Fig. 3b), the survival probabilitie®,(t), P,(t), and
P (t) are plotted forB=1/A. In this temperature regime the

A. Unbiased systems



10 At
FIG. 4. Survival probabilityP5(t) for a temperaturg8=1/A.

The full curve depicts the result faf,,=2. The dashed line rep-
resents the sequential exchange result. The dimensionless coupling

strengthe is 0.1.
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ence in the dynamics depicted in Figs. 3 and 5 is a different
initial value. For a symmetric initial state the Markov ap-
proximation fails and second-order superexchange transi-
tions must be taken into account. On the contrary, if the
system starts out of an edge state, the accuracy of the Mar-
kov approximation is excellent and the dynamics is totally
controlled by sequential transitions. From this we conclude
that the validity of different approximations is not only de-

209
10 [
Pt) |
Cl (@
oy
\
i
\ ]
05 | ! T
\ o
\\ o
N -
//)-\‘ \1\$<'\ ''''''''''''''''''''''''''
SN T
0 //, - ST
0 5 10 At
1.0
Pt
) (b)
0.5 P
/ e
AN
N\ 7 e e
/,/ 7 ‘Q\\\\
///// T
v T —
0 : .
0 10 20 At

state.

B(t) (a)
0.8
04t
/\\
/ //—‘:?T—:—;T—s
/// P -
e .
0 0 40 80 At
(b)
20 At

FIG. 5. Survival probabilitiesP;(t) for the temperaturess
=0.1/A (@) and B=1/A (b). The system is prepared in the state

|©1). The tunneling dynamics is exactly reproduced by the Markov

approximation. The dimensionless coupling strengtis 0.1 [full
linesP,(t), long-dashed lineB,(t), short-dashed lineB;(t), short
dash-dotted line®,(t), and long dash-dotted lind2s(t)].

; FIG. 6. Survival probabilitiesP;(t) for the temperatures
pending on the model parameters such as temperature ari/A and a biag;=(3—j)A. In the upper grapke), the system is
coupling strength, but is also highly sensitive to the initial prepared in the statg;) and in the bottom graptb) the system is

prepared in the edge stater,). The dimensionless coupling
strengtha is 0.1[full lines P4(t), long-dashed line®,(t), short-

dashed linedP5(t), short dash-dotted lineB,(t), and long dash-
dotted linesPg(t)].

B. Biased systems

We now study a biased system with;=2A, e,
=1A, e3=0, e,=—1A, andes;= —2A for a temperature of
B=1/A. The survival probabilities are shown in Figgap
and Gb) for an initial preparation in the stafe3) and|¢;),
respectively. For the initial stafe,) the oscillations prevail
almost twice as long.

In Fig. 7(a), P5(t) is shown for three different approxi-
mations for a symmetric initial value. The full line corre-
sponds to the IBCA and the short-dashed line to the Markov
approximation. The long-dashed line shows the calculation
where only the local contributions of the influence functional

were taken into account. This corresponds to settijg
=0 for k<j. Here the coherent oscillations are overesti-
mated remarkably by the Markov approximation. It is obvi-
ous from Fig. Ta) that the next-neighbor interactions in the
influence functional lead to qualitative corrections.

For a system with an initial state,), the time evolution
of the population of this state is shown in Fighy. Here the
dynamics is fairly well reproduced by the Markov approxi-
mation. For all simulations of the biased system second-

order superexchange transitiong,f,=2) must be taken into
account.

This result makes clear that approximations must be care-
fully chosen. From Fig. (& it is clear that for a system,
which is initially prepared in the center stdtg;), the next-
neighbor interblip interactions are crucial, whereas Fi@) 7
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FIG. 7. (a) P5(t) for the same parameters as Figg)6(b) P4(t)

matrix element. Consequently, every path is a succession of
diagonal and off-diagonal intervals. On the contrary, in the
multilevel system, there are clusters, excursions away from
the diagonal, of any even order in the coupling matrix ele-
ment, and, therefore, next-neighbor intervals exhibit interac-
tions in the real as well as the imaginary part of the time-
nonlocal influence functional. In principle, the system can
propagate along any path in the reduced density matrix. The
real part of the influence functional, however, acts as a
Gaussian filter in the quantum fluctuations. If the tempera-
ture and/or coupling is strong, clusters, which travel far away
from the diagonal, are effectively suppressed and as a con-
sequence the exchange is dominated by sequential processes
or processes that have a maximum quantum fluctuatiQn
Interestingly, the validity of the Markov or local interaction
approximation depends crucially on the initial state. More-
over, the same is true for the predominating exchange
mechanism. If the system starts out from the central state,
long-range interactions and thus higher-order exchange
mechanisms are more important than for the dynamics of
systems that start out of an edge state.

As an illustrative example, a 5-state system with a mod-
erate coupling and an Ohmic spectral density with very high
cutoff frequency was studied for two different temperatures.
The accuracy of the strict Ohmic and the Markovian approxi-
mation for the interactions entering the influence functional
was investigated. For a cutoff frequency ©f=500A the

for the same parameters as Figb)s The full lines correspond to  simplified version of the interactions given by Hg4) is an
the IBCA, the long-dashed lines correspond to the local interactionadequate approximation. The phase originating from the
and the short-dashed lines correspond to the Markov approximamaginary part of the influence functional gives rise to next-

tion.

shows that for the initial statep,), even the Markov ap-

neighbor interactions only. The real part contains interac-
tions between any segments of a path. In the Markov ap-
proximation the interactions are local and in the case of a

proximation is almost quantitative. Superexchange Processefgh cutoff frequency they are rapidly decaying. In such a

must, however, be taken into account.

VI. CONCLUSIONS AND OUTLOOK

The recently introduced description of the dynamics of

case the first-order IBCA equations give an excellent de-
scription of the dynamics. The extension to driven systems is
the contents of current research.
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