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Dissipative multistate systems in the scaling limit

Manfred Winterstetter
II. Institute of Theoretical Physics, University of Stuttgart, D-70550 Stuttgart, Germany

~Received 9 February 1999!

The dynamics of dissipative multistate systems is studied using integral equations that are derived within the
framework of the path integral-formulation of quantum mechanics. As an illustrative example we study a
5-state system coupled to a harmonic reservoir with an Ohmic spectral density with a high cutoff frequency.
The dominant exchange mechanism determining the dynamics as well as the range of validity of different
approximations to the influence functional are investigated. Besides depending on temperature and the strength
of the system-bath coupling, both the exchange mechanism and the accuracy of different approximations to the
influence functional depend on the state in which the system is initially prepared.@S1063-651X~99!07307-9#

PACS number~s!: 05.30.2d
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I. INTRODUCTION

Quantum Brownian motion is an archetype system
many problems in physics and chemistry. It describes
dynamics of a particle in a multiwell potential that is coupl
to an environment@1#. In the deep quantum regime, the d
namics of such a particle may be modeled by aM-state sys-
tem, where a single localized state corresponds to each m
mum of the potential@2#. The case where the system can
confined to just two states, the familiar spin-boson syst
has found widespread application to various biologic
chemical, and physical systems~see @2#, and references
therein!. Dissipation is induced by a bilinear coupling to
heat bath, which is commonly represented by a set of h
monic oscillators. Another familiar picture is the tigh
binding representation of a quantum particle in a perio
potential under the influence of a bath. If there is only
single localized state in each well, the system is then equ
lent to an infinite one-dimensional lattice. Within the pat
integral formulation of quantum mechanics@2–5#, it is pos-
sible to eliminate a harmonic reservoir. The effect of t
environment is then described by a time-nonlocal influe
functional @4,2,6#.

Many transport phenomena in condensed matter phy
can be modeled by quantum Brownian motion in a cos
potential @7#. The case of frequency-independent damp
applies to the electron-hole drag of charged particles in m
als and quasiparticle tunneling in Josephson junctions@7,8#.
Charge transport through impurities in quantum wires@9# as
well as edge currents in fractional quantum Hall devices@10#
are further applications of the model. In this approach, c
lective excitations of correlated electrons constitute the
ervoir of the quantum Brownian particle. The model has a
been applied to study the current-voltage characteristic
small Josephson junction@7,8,11#, and to study the quantum
diffusion of charged interstitials in metals@12#. In principle,
the number of localized states in an extended periodic po
tial is infinite. In numerical simulations the lattice can on
be represented by a limited number of sites and finite-s
effects must be investigated carefully. We study the ti
evolution of the reduced density matrix of theM-state sys-
tem. In the results discussed in this work, we choos
5-state system, a choice that is somehow arbitrary. If
PRE 601063-651X/99/60~1!/203~9!/$15.00
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aims to calculate transport properties such as the nonlin
mobility or diffusion coefficients, the initial state on the in
finite grid can be chosen arbitrary. If, on the contrary, o
wants to study the transport along a chain, the initial si
must be chosen as the edge states.

Recently, a description of the reduced dynamics in ter
of integral equations termed interacting blip chain appro
mation~IBCA! was derived for the dissipative two-state sy
tem @13#. This approach is generalized toM-state systems in
the present paper. In principle, the range of the memory
the influence functional is unlimited, and thus the numeri
treatment is tedious. Approaches based on the Trotter
up @14–18#, which take into account all or at least long-ran
interactions entering the influence functional, are compu
tionally demanding and suffer from the ubiquitous sign pro
lem @19–21#. If the coupling to the environmental modes
weak and/or the temperature is high, the Markov approxim
tion can be applied, bringing about significant simplificatio
@2,22–25#. Although substantial progress has been made
the analytical side@26–29#, numerical calculations are inevi
table for low temperatures and intermediate coupl
strength. However, if the spectral density of the bath
Ohmic with a high cutoff frequency, the correlations b
tween different segments of an individual path decay rapi
and consequently considering only local contributions
next-neighbor interactions yields a reliable description of
dynamics in a wide range of the parameter space. In
paper, we present results for systems in which the typ
bath frequency is by far the highest frequency entering
model. This parameter regime is often denoted asscaling
limit. Our algorithm is iterative in time and the scaling wi
the number of discretization points is drastically reduced
comparison with a full treatment of the dynamics. For
M-state system andN elementary intervals the number o
paths in the Trotter path integral isM2N, whereas in the
IBCA with next-neighbor interactions the number of co
figurations is only@(M11)M /2#23@(N11)N#/2. In prin-
ciple, the IBCA can be improved to any desired accuracy
becomes practically untractable.

The paper is organized the following way. In Sec. II t
model is presented. In Sec. III, the dynamical quantities a
the formally exact solution are given. The dynamical equ
tions resulting from the IBCA are derived in Sec. IV an
203 ©1999 The American Physical Society
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204 PRE 60MANFRED WINTERSTETTER
applications are discussed in Sec. V. Finally, in Sec.
conclusions are drawn and an outlook is given.

II. THE DISSIPATIVE M-STATE MODEL

We consider aM-state system coupled to a bosonic ba
The states$uw j&% j 51, . . . ,M of the tight-binding system with
energies$ej% j 51, . . . ,M are coupled by next-neighbor intersi
coupling matrix elements. We assume that all next-neigh
coupling matrix elements are equal. Dissipation is induc
by the coupling to an Ohmic bath. The Hamiltonian read

H5HTB1HB1H int . ~1!

Here,HTB is the Hamiltonian of the bare tight-binding sy
tem given by

HTB5
1

2 S e1 0 0 0 . . .

0 e2 0 0 . . .

0 0 e3 0 . . .

0 0 0 e4 . . .

. . . . . . . . . . . . . . .

D
2

D

2 S 0 1 0 0 . . .

1 0 1 0 . . .

0 1 0 1 . . .

0 0 1 0 . . .

. . . . . . . . . . . . . . .

D , ~2!

and the bath and the system-bath interaction are taken
account by

HB5(
a

S pa
2

2ma
1

mava
2

2
xa

2 D Î , ~3!

H Int5(
a

S 2caxaQ̂1
ca

2

2mava
2
Q̂2D . ~4!

Î is the identity in the Hilbert space of the tight-bindin
system. The first term inH int describes the bilinear system
bath coupling, and the second term represents a counter
which renders the system translationally invariant. The po
tion operatorQ̂ of the tight-binding particle is given by

Q̂5q0 diag~1,2,3, . . .!1q̄Î , ~5!

whereq0 measures the spacing of the tight-binding lattic
The shift q̄ is a measure of the polarization of the bath. T
states of theM-level system correspond toM localized states
in a potential energy function. The reduction of the syst
dynamics to such aM-level system is justified, if the othe
discrete states are energetically well separated from th
lowestM states.

The influence of the bosonic bath on the tight-bindi
system is captured by the spectral density function

J~v!5
p

2 (
a

ca
2

mava
d~v2va!. ~6!
I,

.

or
d

to

rm,
i-

.

se

In the numerical calculations presented in this paper, we
sume a continuous spectral density of Ohmic form,

J~v!5~2pav/q0
2!expS 2

v

vc
D . ~7!

In our notationa is the dimensionless Kondo parameter, th
describes the strength of the bilinear system-bath coupl
and vc is a high-frequency cutoff setting the typical tim
scale of the dynamics of the bath. Our approach is, howe
not restricted to a certain form of the spectral density.
principle any number of discrete modes as well as any c
tinuous spectral density can be treated.

III. DYNAMICAL QUANTITIES AND FORMALLY
EXACT SOLUTION

We are interested in the dynamics of the reduced den
matrix,

^rkl~ t !&b5tr batĥ w inu^exp~ iHt !/\uwk&

3^w l uexp~2 iHt !&buw in&, ~8!

where at timet50 the system is prepared in a factorizin
initial staterkl(0)5dk, ind l , in^rB&b with the bath in thermal
equilibrium. ^&b denotes the thermal average with respect
the bath,b51/kBT is the inverse temperature, and theuw j&
are the states of the tight-binding system. Equation~8! can be
expressed in terms of a double path integral:

^rkl~ t !&b5E DqE Dq8A@q#B@q#A* @q8#B* @q8#

3exp$2FFV@q,q8#%. ~9!

Here, the quantityA@q# is the probability amplitude of the
tight-binding system associated with the pathq(t) in the ab-
sence of biasing and fluctuating forces. The determini
biasing forces are encapsulated in the factor

B@q#5expH 2 i E
0

t

dt8e@q~ t8!#J . ~10!

The influence functionFFV@q,q8# captures the influences o
the fluctuating forcez(t). For Gaussian statistics@2#,

FFV@q,q8#5E
0

t

dt8E
0

t8
dt9@q~ t8!2q8~ t8!#

3@^z~ t8!z~ t9!&b q~ t9!

2^z~ t8!z~ t9!&b q8~ t9!#.

*Dq in Eq. ~9! symbolically denotes summation in the co
figuration space over all paths with fixed boundaries. As
paths are piecewise constant, the influence functionF is
conveniently expressed in terms of the second integ
Q(t82t9) of the force correlation function̂z(t8)z(t9)&. We
now introduce the variables@2#

h~ t !5„q~ t !1q8~ t !…/2, ~11!

j~ t !5„q~ t !2q8~ t !…/2. ~12!
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The quasiclassical coordinateh(t) describes propagation o
the center of mass of the tight binding particle while t
so-called quantum fluctuationsj(t) reflect excursions away
from the diagonal of the reduced density matrix. The co
dinates are illustrated in Fig. 1 for a 5-state system.

In analogy to Eq.~9!, the exact dynamics of the elemen
of the reduced density matrix is given by

^r̃h,j~ t !&b5E Dj exp$2ReF̃FV@j#%

3E Dj hÃ@j,h#B̃@j,h#exp$2ImF̃FV@j,h#%,

~13!

in terms of the coordinatesj andh. In this representation, we
exploit the fact that the real part of the influence functi
depends on the quantum fluctuations only. Thus the symb
summation in configuration space can be carried out in
steps.Dj denotes summation over all possible configuratio
of the quantum fluctuations andDjh symbolizes the summa
tion over the manifold of different quasiclassical configu
tions corresponding to the same quantum fluctuation. Eq
tions ~13! and ~9! are connected through the relations,

Ã@j,h#5A@q#A* @q8#, B̃@j,h#5B@q#B* @q8#.
~14!

The contribution depending on the bias is given by

B̃@j,h#5expF2 i E
0

t

dt8«hr ,jr
~ t8!G ,

«hr ,jr
~ t !5e@h~ t !1j~ t !#2e@h~ t !2j~ t !#. ~15!

If the system undergoes transitions between different st
at theN21 intermediate timest j within the interval@ t0 ,tN#,
the values of the functionsh(t) andj(t) are piecewise con
stant on the intervalst j5t j 112t j , j 50, . . . ,N21. Their
values are denotedh j andj j , respectively. Thus, the influ
ence functional reads

FIG. 1. The quasiclassical coordinateh5(q1q8)/2 and the
quantum fluctuationsj5(q2q8)/2 are depicted schematically fo
the reduced density matrix of a 5-state system.
-
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F̃FV@h,j#5 (
r 50

N21

~j r
2L r ,r2 i j rh rXr ,r !

1 (
r 51

N21

(
s50

r 21

~j rL r ,sjs2 i j rXr ,shs!. ~16!

Here, the first term describes the contributions within t
intervalst j and the second term captures all interactions
tween different segments of a path. TheL r ,s andXr ,s are the
real and imaginary parts of the interaction of the intervar
with the preceding intervals. Upon introducing the notations
Qj ,k5Q(t j2tk) andQ(t)5Q8(t)1 iQ9(t), the interactions
read

L j , j5Qj 11,j8 , ~17!

Xj , j5Qj 11,j9 2 1
2 t jm, ~18!

L j ,k5Qj 11,k8 1Qj ,k118 2Qj 11,k118 2Qj ,k8 , ~19!

Xj ,k5Qj 11,k9 1Qj ,k119 2Qj 11,k119 2Qj ,k9 , ~20!

with

m5(
a

ca
2

mava
5

2

pE0

`

dv
J~v!

v
. ~21!

The second term in the expression forXj , j is exactly com-
pensating the counterterm in Eq.~4!. The twice integrated
kernel of the influence function is given by

Q~t!5
1

pE0

`

dv
J~v!

v2

cosh~v/2T!2cosh~v/2T2 ivt!

sinh~v/2T!
.

~22!

Note thatQ9(t) does not depend on temperature and con
quently the validity of approximations to the exactQ9(t) is
not sensitive to the temperature. For the Ohmic spectral d
sity given in Eq.~7!, Q(t) reads@30#

Q8~t!52a lnS G2~k!A11vc
2t2

G~k1 iTt!G~k2 iTt!
D ,

Q9~t!52a arctan~vct!, ~23!

whereG(z) is the gamma function, andk511T/vc . This
form holds for arbitrary cutoff frequencyvc and we have
m54avc . In the limit of largevc /D, the so-calledscaling
limit, Eq. ~23! reduces to

Q8~t!52a ln@~vc /pT!sinh~pTt!#,

Q9~t!5pa sgn~t! with Q9~0!50. ~24!

The approximation ofQ9(t) by a step function simplifies the
expressions~18! and~20! for the imaginary part of the influ-
ence functional,

Xj , j5pa2 1
2 t jm, ~25!

Xj , j 2152pa,
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Xj , j 2r50 for r>2. ~26!

The influence function now reads

F̃FV
Ohmic@h,j#5 (

r 50

N21

j r
2Q9~t r !1 (

r 51

N21

(
s50

r 21

~j rL r ,sjs!

2 iap (
r 51

N21

j r~h r2h r 21!. ~27!

If, in addition to a large cutoffvc , one assumes weak cou
pling and high temperatures,Q8(t) can be further approxi-
mated by a linearized function,

Q8~t!52a lnS vc

2pTD12apTt. ~28!

Insertion of Eq.~28! into Eq. ~16! leads to the influence
functional,

F̃FV
lin @h,j#52apT (

r 51

N21

~j r
2t r !22a (

r 51

N21

j r
2 lnS vc

2pTD
2 iap (

r 51

N21

j r~h r2h r 21!. ~29!

Here, the boundary conditionj050 is taken into account
This linearization corresponds to a Markov approximation
the real part of the kernel of the influence functio
^z(t8)z(t9)&5Kd(t82t9). Fora50.1 andb51/D the accu-
racy of the various approximations are illustrated in Fig.
In the upper graph in Fig. 2, the correct expression forQ8
given by Eq.~23! is compared with the highvc approxima-
tion given by Eq.~24!. The differences vanish on a sho
time scale. In the inset in Fig. 2~a!, the exact expression fo
Q8 is compared with the linearized version of the interact
given by Eq.~28!. Please note that the time window in th
inset is 25 times bigger than the one in the upper graph
Fig. 2. On an intermediate time scale the exact expres
approaches the asymptotic linear behavior. From this fig
it is clear that interactions between different path segme
can be neglected if the intervals are separated by a tim
;1/2vc . Finally, we examine the form of the imaginar
partQ9 for largevc . After a timet;1/10vc the function is
constant. Figure 2~b! suggests to approximate the exact fun
tion by the step function given by Eq.~24!.

IV. THE INTERACTING-BLIP CHAIN APPROXIMATION

Recently, a formulation of the dynamics of driven dis
pative two-state systems in terms of integral equations
introduced@13,24#. Starting from this formulation of the dy
namical problem, more and more sophisticated approxi
tions in the influence functional can be defined by system
cally taking into account more and more interactio
between different path segments in the influence function
which in turn give rise to increasingly more elaborate s
tems of integral equations. As linked clusters are genera
.

in
n
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-

s

a-
i-
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-
ed

by this approach, it has been named IBCA. Practical imp
mentations, however, are setting limits on the range of
interactions included. The form of the influence function
given by Eq.~16! makes a decisive difference apparent b
tween the dynamics of a two-state system and a multis
system. Imagine a two-state system evolving in time und
going transitions between different states of the density m
trix at timestk starting out of a diagonal state. If the syste
leaves the diagonal of the density matrix, there are only t
off-diagonal states it can occupy. After the succeeding tr
sition the system is enforced to return to the diagonal. S
an excursion is called ablip whereas an intermediate se
ment of a path is calledsojourn @26#. Each path is thus a
succession of diagonal and off-diagonal segments; at
time tk the system hops, it jumps from the diagonal to t
off-diagonal or vice versa. In multistate systems the situat
is somewhat different. If the system leaves the diagona
the time t5t0, it can undergo any number of transition
within the off-diagonal states until it returns to the diagon
These excursions are now calledclusters@28#. Within such a
cluster, any interval has interactions via the real part of
influence functional with its neighbor without a sojourn
between.

In the sequel we approximate the influence functional

FIG. 2. In ~a! the real partQ8 of the twice-integrated kernel o
the influence functional is shown. The full line depicts the ex
result and the dashed line shows the highvc approximation. The
function is shown fort50 until vct50.02. In the inset the full line
depicts the exact result and the dashed line shows the linea
approximation. The function is shown fort50 until vct50.5. In
~b! the imaginary partQ9 of the twice integrated kernel of the
influence functional is shown. The full line depicts the exact res
and the dashed line shows the step function for highvc . The func-
tion is shown fort50 until vct50.5. The dimensionless couplin
strengtha is 0.1 and the inverse temperatureb is 1/D.
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neglecting all interactions withr 2s.1 in Eq.~16!, yielding

F̃ IBCA@h,j#5 (
r 50

N21

~j r
2L r ,r2 i j rh rXr ,r !

1 (
r 51

N21

~j rL r ,r 21j r 212 i j rXr ,r 21h r 21!.

~30!

If we introduce the quantitiesr̂h,j(t,t) describing all paths
that hopped into the state$h,j% at time t2t and remained
there until the final timet, we can express the dynamics
the reduced density matrix in terms of coupled integral eq
tions for ther̂h,j(t,t).

The initial conditions are given by

r̂h,j~0,0!5dh,h init
dj,0 , ~31!

for a system that starts out of the diagonal state with
quasiclassical coordinateh init . The dynamical equations cor
responding to the influence function~30! are then given by

r̂h,j~ t,t!5E
0

t2t

dt8 (
h85h61,j85j61

Kh,j
h8,j8~t,t8!

3 r̂h8,j8~ t2t,t2t2t8!, ~32!

where theKh,j
h8,j8(t,t8) are the kernels depending on th

lengths of the intervalst and t8. The kernels describe th
interaction between the actual and the proceeding inter
They are given by

Khr ,jr

hr 21 ,jr 21~t r ,t r 21!

52sgn@~j r2j r 21!~h r2h r 21!#
iD

2

3exp~2 i«hr ,jr
t r !exp~j r

2L r ,r2 i j rh rXr ,r !

3exp~j rL r ,r 21j r 212 i j rXr ,r 21h r 21!. ~33!

The elements of the reduced density matrix are finally
tained by

r̃h,j~ t !5dh,h init
dj,01E

0

t

dt8r̂h,j~ t,t8!. ~34!

The first term in Eg.~34! takes into account the path th
does not undergo any transition. By keeping trace of m
and more interval lengths, the IBCA equations can be
tended to a formally exact description of the dynamics. Ho
ever, the higher-order equations are numerically untracta
because of the algebraic growth of the required memory

The simplest approximation to the influence function
yielding integral equations consists in taking into account
local interactions only. We then have

F̃ local@h,j#5 (
r 50

N21

~j r
2L r ,r2 i j rh rXr ,r !. ~35!
-

e

l.

-

e
-
-
le

l
e

The kernels that correspond to the local interaction appro
mation of the influence functional~35! are given by

Khr ,jr

hr 21 ,jr 21~t r !52sgn@~j r2j r 21!~h r2h r 21!#
iD

2

3exp~2 i«hr ,jr
t r !exp~j r

2L r ,r2 i j rh rXr ,r !.

~36!

The dynamical integral equations corresponding to the k
nels ~36! are then drastically simplified. They are given b

r̂h,j~ t !5E
0

t

dt (
h85h61,j85j61

Kh,j
h8,j8~t!r̂h8,j8~ t2t!.

~37!

Equations~37! are, however, already more general than
golden rule equations, because there is no restriction to
possible transitions between different diagonal states of
reduced density matrix invoked here. The approximat
consists in treating the interactions of the influence fu
tional only locally but still non-Markovian.

V. RESULTS

We study the dynamics of dissipative multistate syste
with a moderate system-bath couplinga50.1 and Ohmic
dissipation with a high cutoff frequency ofvc5500/D, a
value which is rather high so that the system will beha
strictly Ohmic. In Sec. II, the formally exact solution of th
problem was given. Despite recent progress in analytica
well as numerical approaches, a treatment of the dynam
avoiding any approximation is out of reach, if one wishes
perform simulations for intermediate to long propagati
times. We discuss three different lines of approximati
schemes.

~i! The exact influence functional given by Eq.~16! may
be truncated. If only next-neighbor interactions are taken i
account, the influence functional Eq.~30! is obtained. In
principle, by cutting off the interactions after themth-order
next-neighbor interactions, a sequence of more and more
phisticated approximations can be defined, which in turn
more and more tedious to be evaluated.

~ii ! The exact, twice-integrated kernelQ(t) of the influ-
ence functional, Eq.~23!, can be replaced by Eq.~24! in the
scaling limit. In the resulting influence functiona
F̃FV

Ohmic@h,j#, Eq. ~27!, the time-nonlocal interactions onl
appear in the real part. In the weak coupling and high te
perature regime,Q(t) can be replaced by a linearized fun
tion given by Eq.~28!. In the corresponding influence func
tional F̃FV

lin @h,j#, Eq. ~29!, only local interactions survive.
~iii ! In principle, the system can evolve in time along a

possible path in the reduced density matrix. Excursions aw
from the diagonal of the reduced density matrix act as
Gaussian filter in the configuration space@20#. Therefore, it
is often possible to truncate the excursions away from
diagonal by some maximum valuejmax, i.e., uj(t)u<jmax
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olds for all times 0,t,t. Settingjmax51 corresponds to
the so-called sequential exchange mechanism.

The aim of this paper is to determine the range of valid
of the different approximations in dependence of the te
perature and the initial preparation. In principle, any com
nation of different approximations forQ(t), the influence
functional, and the exchange mechanism can be combi
However, ifQ(t) is linearized, all interblip correlations van
ish. This illustrates that a linearQ(t) is equivalent to a Mar-
kov approximation@2,24#. Generally speaking, the streng
of the interblip correlations in the influence functional do
not depend on the linear part ofQ(t) @see Eq.~19!#. The
familiar golden-rule approximation consists in settingjmax

51, and using the influence functionalF̃ IBCA@h,j#, where
Xr ,r 21 is replaced byX̃r ,r 2152Q9(t r). Within the golden
rule j rj r 2150 holds for allr.

Unfortunately, it is impossible to include all interaction
exactly in numerical simulations if one does not use stoch
tic integration techniques@20# or alternative sophisticated ap
proximation schemes@21,15#. The approximate influence
function given by Eq.~30! underlying the dynamical integra
Eq. ~32! only takes into account next-neighbor interaction
A high cutoff frequency and moderate temperatures ren
the influence functional~30! a reliable approximation, be
cause the interactions between separated path segments
ish if Q(t) is linear, and we have seen that the deviations
Q(t) from linearity are relevant at short times only~see Fig.
2!. The dynamical Eq.~32! intrinsically generates a cluste
expansion. A cluster is a sequence of propagation interv
that leaves the diagonal of the reduced density matrix
time t init and returns to the diagonal at a later timetfinal .
During a cluster the system may undergo any number
transitions between off-diagonal states but never comes b
to nor crosses the diagonal. To take into account interact
between clusters, second next-neighbor interactions mus
considered.

The calculations presented here are for dissipative 5-s
systems, and we consider two different initial conditions
symmetric state and an edge state. Interestingly enough
accuracy of employed approximations depends on the in
state. We present results for the time evolution of the di
onal elements of the reduced density matrix^r̃ j ,0(t)&b ,
which we denote byPj (t) henceforth. In Sec. V A we study
unbiased systems. Biased systems are investigated in
V B.

A. Unbiased systems

First we focus our attention on systems with zero sta
bias (e15•••5e550). In Fig. 3~a!, the survival probabili-
ties Pj (t) are shown for the temperatureb50.1/D. The sys-
tem is initially prepared in the stateuw3&. Because of the
symmetry of the system,P1(t) and P5(t) as well asP2(t)
and P4(t) coincide. The graphs ofP4(t) and P5(t) are,
therefore, omitted in Fig. 3. The dynamics is described v
accurately by the Markov approximation corresponding
the interaction given by Eq.~28!, and it is almost completely
dominated by the sequential exchange processes. The co
butions of paths, which travel further away from the diago
of the reduced density matrix, are negligible. The differen
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are almost invisible on the scale of Fig. 3~a!. The situation
changes considerably if we reduce temperature by a facto
ten. In Fig. 3~b!, the survival probabilitiesP1(t), P2(t), and
P3(t) are plotted forb51/D. In this temperature regime th
Markov approximation breaks down. Replacing the exact
pression~23! by the corresponding Ohmic form~24!, how-
ever, results in negligible differences in the results. The
vergence of the expressionQ8(t) that occurs ift tends to
zero, does not spoil numerical simulations on a grid in tim
if the latter is coarse enough. The convergence of the res
has been checked empirically. In this temperature regime
dynamics is no longer controlled by the sequential excha
mechanism. Processes withjmax52 must be taken into ac
count. In Fig. 4, the full line corresponds tojmax52, and the
dashed line tojmax51. Clusters which travel further awa
from the diagonal can be neglected on the scale show
Fig. 4.

So far we considered the dynamics of systems prepare
the stateuw3&. Starting out from this state, the system c
move in both directions along the discretized system coo
nate with equal probabilities. Now we study the dynamics
systems, which start out from the edge stateuw1&. Figure 5~a!
shows the population probabilitiesPj (t) for a temperature
b50.1/D. The relaxation towards the equilibrium value
the population probabilitiesPj (t) is much slower than for a
symmetric initial preparation. Again, for this temperatur
the dynamics is exactly reproduced by the Markov appro
mation, and it is determined by the sequential excha
mechanism. This also holds true for the temperatureb
51/D. The results are depicted in Fig. 5~b!. The only differ-

FIG. 3. Survival probabilities for the temperaturesb50.1/D ~a!
andb51/D ~b!. The system is initially prepared in the stateuw3&.
The dimensionless coupling strengtha is 0.1@full lines P3(t), long-
dashed linesP2(t)5P4(t), short-dashed linesP1(t)5P5(t)].
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ence in the dynamics depicted in Figs. 3 and 5 is a differ
initial value. For a symmetric initial state the Markov a
proximation fails and second-order superexchange tra
tions must be taken into account. On the contrary, if
system starts out of an edge state, the accuracy of the M
kov approximation is excellent and the dynamics is tota
controlled by sequential transitions. From this we conclu
that the validity of different approximations is not only d
pending on the model parameters such as temperatur
coupling strength, but is also highly sensitive to the init
state.

FIG. 4. Survival probabilityP3(t) for a temperatureb51/D.
The full curve depicts the result forjmax52. The dashed line rep
resents the sequential exchange result. The dimensionless cou
strengtha is 0.1.

FIG. 5. Survival probabilitiesPj (t) for the temperaturesb
50.1/D ~a! and b51/D ~b!. The system is prepared in the sta
uw1&. The tunneling dynamics is exactly reproduced by the Mark
approximation. The dimensionless coupling strengtha is 0.1 @full
linesP1(t), long-dashed linesP2(t), short-dashed linesP3(t), short
dash-dotted linesP4(t), and long dash-dotted linesP5(t)#.
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B. Biased systems

We now study a biased system withe152D, e2

51D, e350, e4521D, ande5522D for a temperature of
b51/D. The survival probabilities are shown in Figs. 6~a!
and 6~b! for an initial preparation in the stateuw3& anduw1&,
respectively. For the initial stateuw1& the oscillations prevail
almost twice as long.

In Fig. 7~a!, P3(t) is shown for three different approxi
mations for a symmetric initial value. The full line corre
sponds to the IBCA and the short-dashed line to the Mar
approximation. The long-dashed line shows the calculat
where only the local contributions of the influence function
were taken into account. This corresponds to settingL j ,k
50 for k, j . Here the coherent oscillations are overes
mated remarkably by the Markov approximation. It is obv
ous from Fig. 7~a! that the next-neighbor interactions in th
influence functional lead to qualitative corrections.

For a system with an initial stateuw1&, the time evolution
of the population of this state is shown in Fig. 7~b!. Here the
dynamics is fairly well reproduced by the Markov approx
mation. For all simulations of the biased system seco
order superexchange transitions (xmax52) must be taken into
account.

This result makes clear that approximations must be c
fully chosen. From Fig. 7~a! it is clear that for a system
which is initially prepared in the center stateuw3&, the next-
neighbor interblip interactions are crucial, whereas Fig. 7~b!

ling

v

FIG. 6. Survival probabilitiesPj (t) for the temperatureb
51/D and a biasej5(32 j )D. In the upper graph~a!, the system is
prepared in the stateuw3& and in the bottom graph~b! the system is
prepared in the edge stateuw1&. The dimensionless coupling
strengtha is 0.1 @full lines P1(t), long-dashed linesP2(t), short-
dashed linesP3(t), short dash-dotted linesP4(t), and long dash-
dotted linesP5(t)#.
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shows that for the initial stateuw1&, even the Markov ap-
proximation is almost quantitative. Superexchange proce
must, however, be taken into account.

VI. CONCLUSIONS AND OUTLOOK

The recently introduced description of the dynamics
driven dissipative two-state systems in terms of coupled
tegral equations, denoted IBCA, has been extended to m
tilevel systems. There is a qualitative difference due to
richer combinatorics of a multilevel system. In a two-sta
system the excursions away from the diagonal of the redu
density matrix are of second order in the intersite coupl

FIG. 7. ~a! P3(t) for the same parameters as Fig. 6~a!. ~b! P1(t)
for the same parameters as Fig. 6~b!. The full lines correspond to
the IBCA, the long-dashed lines correspond to the local interact
and the short-dashed lines correspond to the Markov approx
tion.
h
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ed
g

matrix element. Consequently, every path is a successio
diagonal and off-diagonal intervals. On the contrary, in t
multilevel system, there are clusters, excursions away fr
the diagonal, of any even order in the coupling matrix e
ment, and, therefore, next-neighbor intervals exhibit inter
tions in the real as well as the imaginary part of the tim
nonlocal influence functional. In principle, the system c
propagate along any path in the reduced density matrix.
real part of the influence functional, however, acts as
Gaussian filter in the quantum fluctuations. If the tempe
ture and/or coupling is strong, clusters, which travel far aw
from the diagonal, are effectively suppressed and as a c
sequence the exchange is dominated by sequential proc
or processes that have a maximum quantum fluctuationjmax.
Interestingly, the validity of the Markov or local interactio
approximation depends crucially on the initial state. Mo
over, the same is true for the predominating exchan
mechanism. If the system starts out from the central st
long-range interactions and thus higher-order excha
mechanisms are more important than for the dynamics
systems that start out of an edge state.

As an illustrative example, a 5-state system with a mo
erate coupling and an Ohmic spectral density with very h
cutoff frequency was studied for two different temperatur
The accuracy of the strict Ohmic and the Markovian appro
mation for the interactions entering the influence functio
was investigated. For a cutoff frequency ofvc5500D the
simplified version of the interactions given by Eq.~24! is an
adequate approximation. The phase originating from
imaginary part of the influence functional gives rise to ne
neighbor interactions only. The real part contains inter
tions between any segments of a path. In the Markov
proximation the interactions are local and in the case o
high cutoff frequency they are rapidly decaying. In such
case the first-order IBCA equations give an excellent
scription of the dynamics. The extension to driven system
the contents of current research.
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